TDCR and Efficiency for Monoenergetic Electrons

Below $R=$ TDCR and $n=$ mean number of photoelectrons from one PMT.
Probability for triples, $\mathrm{T}: T=\left(1-e^{-n}\right)^{3}$.
Probability for logical doubles, D:
$D=3\left(1-e^{-n}\right)^{2}-2\left(1-e^{-n}\right)^{3}=\left(1-e^{-n}\right)^{2}\left(1+2 e^{-n}\right)$.
$T D C R=R=T / D$
With monoenergetic electrons this simplifies to
$R=\frac{1-e^{-n}}{1+2 e^{-n}}$
From which
$e^{-n}=\frac{1-R}{1+2 R}$
Efficiency $=$ Eff $=$ probability for logical doubles = D.
$E f f=\left(1-e^{-n}\right)^{2}\left(1+2 e^{-n}\right)$
$E f f=\left(1-\frac{1-R}{1+2 R}\right)^{2}\left(1+2 \frac{1-R}{1+2 R}\right)$
$=\left(\frac{3 R}{1+2 R}\right)^{2}\left(\frac{3}{1+2 R}\right)$
$=\frac{27 R^{2}}{(1+2 R)^{3}}$

