

EcoGamma
Software Development

Kit
7072686 Programmer’s Manual

Copyright 2012, Canberra Industries, Inc. All rights reserved.

The material in this document, including all information, pictures,
graphics and text, is the property of Canberra Industries, Inc. and is
protected by U.S. copyright laws and international copyright
conventions.

Canberra expressly grants the purchaser of this product the right to
copy any material in this document for the purchaser’s own use,
including as part of a submission to regulatory or legal authorities
pursuant to the purchaser’s legitimate business needs.

No material in this document may be copied by any third party, or used
for any commercial purpose or for any use other than that granted to
the purchaser without the written permission of Canberra Industries,
Inc.

Canberra Industries, 800 Research Parkway, Meriden, CT 06450
USA.
Tel: 203-238-2351 FAX: 203-235-1347 http://www.canberra.com/.
Canberra is an AREVA company.

The information in this document describes the product as accurately
as possible, but is subject to change without notice.

Printed in the United States of America.

For Technical Assistance, please call our Customer Service Hotline at
800-255-6370 or email techsupport@canberra.com.

Table of Contents

1. Introduction ... 3

The Software ..3

System Requirements ...4

Software ...4

Installation ..4

Directory Structure...6

Source Code ...7

2. Getting Started .. 8

Development...8

Overview..8

Using the library...8

Entry Point ...13

Namespace ...14

Thread Safety ...14

Methods..15

Examples ..33

Discovering devices ...33

Getting device parameters..35

Setting device parameters ..37

Getting historical data ..39

Calibration..41

Linearity Check..45

Parameters ..49

Acquisition ...49

Calibration..52

Network..53

System..55

Alarm..57

Calibration Status ...58

Device Status ..59

Logging Details ..61

 i

ii

Log Summary...61

Log Data...62

Exceptions ..63

 The Software

1. Introduction

The EcoGamma Communications Software Development Kit (SDK) allows
development of software that communicates with and controls Canberra’s
EcoGamma dose probes. The SDK provides access to setup, control, and data access
functions. The SDK contains libraries, source code, project files, and examples. The
SDK consists of two technology implementations Java and .NET.

These two technologies were chosen because of the following:

 They are supported on most platforms and operating systems

 They do not require recompilation for any type of processor. Simply copy
the libraries on your platform and consume them.

 They take advantage of managed code environments

 They can be imported into other programming environments like Groovy,
Scala, F#, LabView, MatLab, Visual Basic, C++, and more.

 They are object oriented.

The classes and methods provided by the libraries for each technology are very
similar to each other.

The Software
The SDK is capable of doing the following:

 Connecting to, configurating and collecting data from an EcoGamma.

 3

System Requirements

Software

The following are required in order to use this software.

For Java development:

 Eclipse JDT 3.6 or greater.
 Java 5.0 or greater.

For Non-Windows .NET development:

 MonoDevelop 2.4 or greater.

 Mono Framework 2.8 or greater.

For Windows .NET development:

 Visual Studio 2008 or greater.
 .NET 3.5 or greater

Installation
Installation is trivial. Run the installer file, install.jar. Double click on the install.jar
file while using Windows, Ubuntu Linux and Mac OS X computers systems. The
following dialog will appear.

Press the “Next” button.

4

 Installation

This dialog displays a description of the contents of the installer. Press “Next”
button.

This screen displays the licensing agreement. Choose “I accept the terms of this
license agreement” and press “Next.”

Select the location to install the software and press “Next.”

 5

Choose the features you would like to install and press “Next.”

The software is now installed.

Directory Structure

The directory structure for the SDK is as follows:

 sdk/java. Contains the Java specific files

 sdk/c#. Contains the .NET specific files

Under each of these subdirectories there are similar directories that are as follows:

 lib. Contains the programming library

 src. Contains the source code and project files

 examples. Contains examples

6

 Installation

Source Code

This SDK contains the source code. This allows you to learn how the library is
designed and implemented. Also provides access to resolving any unwanted software
features (i.e., bugs). Furthermore, the source code can be used to easily port the
code to other object oriented languages like ActionScript, C++, Ruby, Python, and
more.

The SDK contains the development projects along with the source code. The Java
library was developed using the Eclipse IDE. The .NET library was developed using
MonoDevelop, but the project file is compatible with Visual Studio 2008.

The code is extremely well documented; the purpose is to provide as much
information as possible so using this source code will be easy.

Before every class or interface definition there exists a comment block that describes
the purpose for the class. Also before every method definition there exists a comment
block that describes the purpose of the method, method arguments, return value, and
exceptions. These comments are displayed with intellisense while coding. Below is
an example.

/**
 * This method will verify that the regions limits meet the

* following constraints:
 * -) left > 0 and right > 0
 * ight -) left < r
 * @invariants. left > 0 and right > 0 and left < right
 * @param left. The left channel
 * @param right. The right channel
 * @exception. canberra.Exceptions.IllegalArgumentException

* error information
 */

 protected void checkRegion(int left, int right) throws Exception

 7

2. Getting Started

Development

Overview

One class, GP110i, is used to perform all communications with the device. The
following sections will discuss this interface and its associated methods and
properties in more detail.

Using the library

Java
The package for this archive is gp110i-2.jar.

You can import this archive into your Eclipse environment by following the steps
below:

 Create a Java project.

 Right mouse click over your Java project in the “Package Explorer” tab and
choose “Properties.”

8

 Development

 Highlight “Java Build Path”

 Select the “Libraries” tab

 Choose “Add External JARS”

 9

 Browse to the location of “gp110i-2.jar” and select it

 Now you are ready to writing your program.

10

 Development

 .NET
The assembly to use is gp110i-2.dll.

MonoDevelop

This section will discuss how to setup the MonoDevelop environment.

You can import this archive into your MonoDevelop environment by following the
steps below:

 Create a C#, Visual Basic, or F# solution

 Right mouse click over your References project in the “Solution Explorer”
tab and choose “Edit References.”

 Select the “.Net Assembly” tab

 11

 Navigate to the gp110i-2.dll file and select it.

 Now you are ready to write your program.

Visual Studio

This section will discuss how to setup the Visual Studio 2010 environment.

You can import this archive into your MonoDevelop environment by following the
steps below:

 Create a C#, Visual Basic, or F# solution

 Expand the “References” folder in the “Solution Explorer”

12

 Development

 Right click the mouse over the “References” folder and select “Add
Reference”

 Select the “Browse” tab and navigate to the gp110i-2.dll assembly.

 Press “OK”

 Now you are ready to write your program.

Entry Point

The main entry point for this Software Development Kit is the GP110i class.

 13

Namespace

The namespace that contains the Software Development Kit is tabulated below.

Namespace Language

com.canberra.communications Java

Canberra.Communications C#

Thread Safety

All methods of the GP110i class are thread-safe. This means that you can share the
same instance between multiple threads without synchronization problems.

14

 Development

Methods

This section will discuss the methods associated with the GP110i class.

Discovery
This method is used to discover other EcoGamma devices on your network. The
return value will update periodically as new devices are discovered. Therefore, it is
best to periodically invoke this method.

Java Format:

public List<String> discoveredDevices();

.NET Format:

public List<String> DiscoveredDevices();

Arguments:

None.

Java Exceptions:

IOException Errors during connection process.

.NET Exceptions:

SocketException Errors during connection process.

Return:

List<String> A list of network addresses; one for each
device that has been discovered.

 15

Open
This method is used to establish a connection between your application and the
device.

Java Format:

public void open(String Device);

.NET Format:

public void Open(String Device);

Arguments:

String Device The network address of the device.

Java Exceptions:

IOException Errors during connection process.

.NET Exceptions:

SocketException Errors during connection process.

Common Exceptions:

DatasourceAlreadyOpenException Indicates that this instance is already
connected to a device.

16

 Development

Open State
This method is used to determine whether the class instance is already connected to a
device.

Java Format:

public boolean isOpen();

.NET Format:

public bool IsOpen;

Return:

State indicating whether a connection exists

Close
This method is used to terminate a connection.

Java Format:

public void close();

.NET Format:

public void Close();

Java Exceptions:

IOException Errors during connection process.

.NET Exceptions:

SocketException Errors during connection process.

Common Exceptions:

DatasourceNotOpenException This error is thrown if this instance is not
connected to a device.

 17

Enumerating Parameters
This method is used to enumerate all of the parameters the device supports. The
information that is returned will contain parameter metadata. The metadata consists
of information like name, description, minimum, maximum, and default value. All
parameters are defined in the namespace
canberra.protocols.gp110i.datatypes.parameters.

The first method will list all parameters. The second method will list read-only
parameters. The last method returns a list of read-write parameters. See the
“Parameters” on page 49 for further information.

Java Format:

public List<IParameterMetaData> listAllParameters();

public List<IParameterMetaData> listReadOnlyParameters();

public List<IParameterMetaData> listReadWriteParameters();

.NET Format:

public List<IParameterMetaData> ListAllParameters();

public List<IParameterMetaData> ListReadOnlyParameters();

public List<IParameterMetaData> ListReadWriteParameters();

Java Exceptions:

IOException Errors during connection process.

.NET Exceptions:

SocketException Errors during connection process.

Common Exceptions:

DatasourceNotOpenException This error is thrown if this instance is not
connected to a device.

DeviceErrorException The device returned an error.

InvalidResponseException An incorrect response was returned.

ChecksumException The checksum received does not match the
computed checksum.

IllegalArgumentException An incorrect argument was supplied to a
method

18

 Development

Return:

A list of parameters.

Getting Parameters
This method is used to get parameter values from the device. See the “Parameters” on
page 49 for further information.

Java Format:

public List<IParameterMetaData> getParameters(List<IParameterMetaData>
pars);

.NET Format:

public List<IParameterMetaData> GetParameters(List<IParameterMetaData>
pars);

Arguments:

List<IParameterMetaData> pars The parameters to get

Java Exceptions:

IOException Errors during connection process.

.NET Exceptions:

SocketException Errors during connection process.

Common Exceptions:

DatasourceNotOpenException This error is thrown if this instance is not
connected to a device.

DeviceErrorException The device returned an error.

InvalidResponseException An incorrect response was returned.

ChecksumException The checksum received does not match the
computed checksum.

Return:

A list of parameters requested from the device.

 19

Setting Parameters
This method is used to get parameter values from the device. See the “Parameters” on
page 49 for further information.

Java Format:

public void setParameters(List<IParameterMetaData> pars);

.NET Format:

public void SetParameters(List<IParameterMetaData> pars);

Arguments:

List<IParameterMetaData> pars The parameters to write

Java Exceptions:

IOException Errors during connection process.

.NET Exceptions:

SocketException Errors during connection process.

Common Exceptions:

DatasourceNotOpenException This error is thrown if this instance is not
connected to a device.

DeviceErrorException The device returned an error.

InvalidResponseException An incorrect response was returned.

ChecksumException The checksum received does not match the
computed checksum.

IllegalArgumentException An incorrect argument was supplied to a
method

20

 Development

Getting Acquisition Data
This method is used to get acquisition values like total dose, dose rate, and
temperature.

Java Format:

public List<IParameterMetaData> getAcquiredData();

.NET Format:

public List<IParameterMetaData> GetAcquiredData();

Java Exceptions:

IOException Errors during connection process.

.NET Exceptions:

SocketException Errors during connection process.

Common Exceptions:

DatasourceNotOpenException This error is thrown if this instance is not
connected to a device.

DeviceErrorException The device returned an error.

InvalidResponseException An incorrect response was returned.

ChecksumException The checksum received does not match the
computed checksum.

IllegalArgumentException An incorrect argument was supplied to a
method

Return:

The acquisition parameters.

 21

Getting Diagnostic Information
This method is used to get diagnostic information like GM tube voltage and LVPS
voltage.

Java Format:

public List<IParameterMetaData> getDiagnosticInformation();

.NET Format:

public List<IParameterMetaData> GetDiagnosticInformation();

Java Exceptions:

IOException Errors during connection process.

.NET Exceptions:

SocketException Errors during connection process.

Common Exceptions:

DatasourceNotOpenException This error is thrown if this instance is not
connected to a device.

DeviceErrorException The device returned an error.

InvalidResponseException An incorrect response was returned.

ChecksumException The checksum received does not match the
computed checksum.

IllegalArgumentException An incorrect argument was supplied to a
method

Return:

The diagnostic information.

22

 Development

Getting Push List
The device supports the ability for pushing data to clients at periodic intervals. The
data that may be pushed is specified in the following table:

Value Description Notes
01 Full Dose Returns the full dose in SSN-2 format with dose units.
19 Temperature Returns the probe temperature in degrees C in signed fixed

point format as follows: <s><vv>.<n>
Where the sign <s> is always present, the value <vv> can
be 1 or 2 digits depending on the magnitude, and the
fractional value <n> is always present

40 Filtered Dose
Rate

Returns the filtered dose rate in SSN-2 format with dose
rate units.

41 Unfiltered
Dose Rate

Returns the unfiltered dose rate in SSN-2 format with dose
rate units.

50 Time Returns the device time in HH:MM:SS format
49 Alarms Returns the alarm indication for Rate and Total as follows:

A:** no alarm
A:R* Rate High or Rate Alert alarm asserted
A:*D Total High or Total Alert alarm asserted
A:RD Both Rate High or Rate Alert alarm

asserted and Rate high or Rate Alert
alarm asserted

53 Append
Checksum

Appends the checksum of the entire push list string to the
end of the string. The checksum format is as follows:

XX<term>
Where XX is the 8-bit XOR of all the characters in the
returned string excluding the checksum and terminator
characters, represented in hex by two hex/ASCII digits. The
<term> character is the string terminator character ‘}’

54 Date & Time Returns the device date and time in DD/MM/YY
HH:MM:SS format

The Value column indicates the value to specify in the CustomPushList parameter
list. The Description column describes the information associated with that custom
push list value. The Notes describe the format of the return value.

 23

The Push List Code Table contains the Push codes that can be sent to the device
through the CustomPushList parameter. Once defined, the Custom Push List must be
activated through the PushListSelect parameter. Lastly, you need to make sure
streaming is enabled, see parameter StreamingEnabled.

Up to 16 individual codes can be specified in a custom push list. Each code must be
specified as two ASCII numeric digits in decimal notation with no separating
characters. Push list codes can range from “00” to “99”

Dose rates and Dose values are returned with appropriate units based on the
DoseUnits parameter as follows:

 With US units selected, the returned units for Dose values are in rems “R”,
millirems “mR”, or microrems “uR”

 With SI units selected, the returned units for Dose values are in sieverts “Sv”,
millisieverts “mSv”, or microsieverts “uSv”

Rates are returned in dose units per hour “/h”

Typical string returned by the push list for dose rates and dose values are as follows:

7.39E+1uR/h 7.51E+1uR/h 5.06E+2uR

7.29E+1uR/h 7.50E+1uR/h 5.06E+2uR

7.39E+1uR/h 7.49E+1uR/h 5.06E+2uR

24

 Development

After setting up the CustomPushList, PushListSelect , and StreamingEnabled
parameters, you can access the pushed data by iteratively invoking the method below.

Java Format:

public String getPushedList();

.NET Format:

public String GetPushedList();

Java Exceptions:

IOException Errors during connection process.

.NET Exceptions:

SocketException Errors during connection process.

Common Exceptions:

DatasourceNotOpenException This error is thrown if this instance is not
connected to a device.

DeviceErrorException The device returned an error.

InvalidResponseException An incorrect response was returned.

ChecksumException The checksum received does not match the
computed checksum.

IllegalArgumentException An incorrect argument was supplied to a
method

Return:

The pushed list data, see above for the format.

 25

Getting History Summary
This method is used to get a summary of the historical data stored on the device. See
the “Logging Details” on page 61 for further information.

Java Format:

public List<Summary> getLogSummary();

.NET Format:

public List<Summary> GetLogSummary();

Java Exceptions:

IOException Errors during connection process.

.NET Exceptions:

SocketException Errors during connection process.

Common Exceptions:

DatasourceNotOpenException This error is thrown if this instance is not
connected to a device.

DeviceErrorException The device returned an error.

InvalidResponseException An incorrect response was returned.

ChecksumException The checksum received does not match the
computed checksum.

IllegalArgumentException An incorrect argument was supplied to a
method

Return:

A list of log summaries. Each summary contains information like file/element
number, start time and end time of the data stored in the element/file, and more.
This information is used to retrieve a historical data stored on the device.

26

 Development

Getting History Data
This method is used to get historical data stored on the device. See the “Logging
Details” on page 61 for further information.

Java Format:

public List<Data> getLogData(int element, Date start, Date end);

.NET Format:

public List<Data> GetLogData(int element, Date start, Date end);

Arguments:

int element The element or file number.

Date start The start time of the data to retrieve.

Date end The end time of the data to retrieve.

Java Exceptions:

IOException Errors during connection process.

.NET Exceptions:

SocketException Errors during connection process.

Common Exceptions:

DatasourceNotOpenException This error is thrown if this instance is not
connected to a device.

DeviceErrorException The device returned an error.

InvalidResponseException An incorrect response was returned.

ChecksumException The checksum received does not match the
computed checksum.

IllegalArgumentException An incorrect argument was supplied to a
method

Return:

The data associated with this element/file and time span.

 27

Modes
These methods are used to enable/disable different modes of operation. You can
determine whether a specific mode is enabled by requesting for the DeviceStatus
parameter.

The first method enables acquisition. The second method enables calibration. The
last method enables logging data.

Java Format:

public void enableCalibration(boolean state, boolean forLowRange);

public void enableLinearityCheck(boolean state, int index, int selRange);

public void enableLogging(boolean state);

.NET Format:

public void EnableCalibration(bool state, bool forLowRange);

public void EnableLinearityCheck(bool state, uint index, uint selRange);

public void EnableLogging(bool state);

Arguments:

boolean state The enable state.

int index The array index (option base 0) of the
linearity check point. See next section for
accessing checkpoints.

boolean forLowRange State that indicates whether to enable
calibration for low or high range tube. A
value of ‘true’ indicates enable for low
range.

int selRange The selected range to use. Values are as
follows:

0 = Automatic. The device automatically
determines which range to use

1 = Low. The device will use the low range
tube.

2=High. The device will used the high range
tube.

28

 Development

Java Exceptions:

IOException Errors during connection process.

.NET Exceptions:

SocketException Errors during connection process.

Common Exceptions:

DatasourceNotOpenException This error is thrown if this instance is not
connected to a device.

DeviceErrorException The device returned an error.

InvalidResponseException An incorrect response was returned.

ChecksumException The checksum received does not match the
computed checksum.

IllegalArgumentException An incorrect argument was supplied to a
method

 29

Linearity Test
These methods are used to get and set the linearity checkpoints. The values that are
specified must be between the values specified by the parameters LowGMLimit and
HighGMLimit.

Java Format:

public float[] getLinearityCheckPoints();

public void setLinearityCheckPoints(float[] pts);

.NET Format:

public Single[] GetLinearityCheckPoints();

public void SetLinearityCheckPoints(Single[] pts);

Arguments:

float[] pts The linearity check points. You must specify
12 points otherwise an exception is thrown,
IllegalArgumentException.

Java Exceptions:

IOException Errors during connection process.

.NET Exceptions:

SocketException Errors during connection process.

Common Exceptions:

DatasourceNotOpenException This error is thrown if this instance is not
connected to a device.

DeviceErrorException The device returned an error.

InvalidResponseException An incorrect response was returned.

ChecksumException The checksum received does not match the
computed checksum.

IllegalArgumentException An incorrect argument was supplied to a
method.

30

 Development

Clear
This method is used to clear different device conditions.

Java Format:

public void clear(int option);

.NET Format:

public void Clear(ClearCommands option);

Arguments:

int option The clear option. The clear options are as
follows:

AlarmCondition. Will clear the alarm or
warning

DiagnosticCounters. Will clear the
diagnostic counters

LogData. Will clear the log data

ResetFactoryDefaults. Will reset to factory
defaults.

TotalDose. Will clear the total dose.

ResetCalibration. Will reset the calibration
due date.

ResetLinearityTest. Will reset the linearity
test information.

See the ClearCommands interface for these
definitions.

Java Exceptions:

IOException Errors during connection process.

.NET Exceptions:

SocketException Errors during connection process.

Common Exceptions:

 31

DatasourceNotOpenException This error is thrown if this instance is not
connected to a device.

DeviceErrorException The device returned an error.

InvalidResponseException An incorrect response was returned.

ChecksumException The checksum received does not match the
computed checksum.

IllegalArgumentException An incorrect argument was supplied to a
method.

32

 Examples

Examples
This section will list several examples. All examples assume that the USB
connection and the associated factory default address are being used.

Discovering devices

This example will show you how to discover EcoGamma devices on your network.

Java
package com.canberra.examples;

import java.util.List;
import com.canberra.protocols.gp110i.communications.GP110i;

public class Main {

 private Main() {};

 public static void main(String[] args) {

 //Create a device instance
 GP110i dev = new GP110i();

try {
 List<String> list=null;

int cnt=0;
 do {

 //Query for the latest discovered devices
 list = dev.discoveredDevices();

 //Indicate whether any were found
 if (list.size() > 0) System.out.println("Found a device.");
 else System.out.println("No devices found.");

 //Pause for 1sec
 java.lang.Thread.sleep(1000);

cnt++;
 //Loop until find a device
 } while((list.size()==0) || (cnt < 30));

 //Display the list of discovered devices
 for(String add : list) {
 System.out.println("Discovered device: " + add);
 }

 }catch(Exception ex) {
System.out.println("Exception: " + ex);

}
finally {

//Close any open connections
try {

if (dev.isOpen()) dev.close();
}
catch(Exception ex) {System.out.println("Exception: " + ex);}

}

System.exit(0);

}}

.NET
using System;
using System.Collections.Generic;

using Canberra.Protocols.GP110i.Communications;

 33

namespace gp110i2
{
 class MainClass
 {
 public static void Main (string[] args)
 {
 GP110i dev = new GP110i();
 try {

List<String> list=null;
int cnt=0;
do {

 //Query for the latest discovered devices
 list = dev.DiscoveredDevices();

 //Indicate whether any were found
 if (list.Count > 0) Console.WriteLine("Found a device.");
 else Console.WriteLine("No devices found.");

 //Pause for 1sec
 System.Threading.Thread.Sleep(1000);

cnt++;

 //Loop until find a device

 } while((list.Count==0) || (cnt < 30));

 //Display the list of discovered devices
 foreach(String add in list) {
 Console.WriteLine("Discovered device: " + add);
 }

 }
 catch(Exception ex) {
 Console.WriteLine("Error: " + ex);
 }

finally {
try {

if (dev.IsOpen) dev.Close();
 }
 catch { }
}

 Console.WriteLine("Done...");
 }
 }
}

34

 Examples

Getting device parameters

This example will show you how to connect and get parameters from the device.

Java
package com.canberra.examples;

import com.canberra.datasources.parameters.IParameterMetaDataBase;
import com.canberra.protocols.gp110i.communications.GP110i;
import com.canberra.protocols.gp110i.datatypes.parameters.Parameter;

public class Main {

 private Main() {};

 @SuppressWarnings("rawtypes")
 public static void main(String[] args) {
 //Create a device instance
 GP110i dev = new GP110i();

 try {

//Open a connection to the device
dev.open("10.0.1.4");

//Loop through all device parameters
for (IParameterMetaDataBase par :

dev.getParameters(dev.listAllParameters())) {
Parameter p = (Parameter) par;
System.out.println("Name: " + p.getName() + "; value: " +

p.getValue());
 }

}
catch(Exception ex) {

System.out.println("Exception: " + ex);
}
finally {

//Close any open connections
try {

if (dev.isOpen()) dev.close();
}
catch(Exception ex) {System.out.println("Exception: " + ex);}

}

System.exit(0);

}}

 35

.NET
using System;
using System.Collections.Generic;

using Canberra.Datasources.Parameters;
using Canberra.Protocols.GP110i.Communications;
using Canberra.Protocols.GP110i.Datatypes.Parameters;

namespace gp110i2
{
 class MainClass
 {
 public static void Main (string[] args)
 {
 GP110i dev = new GP110i();
 try {
 dev.Open("10.0.1.4");

 List<IParameterMetaDataBase> pars = ParameterFactory.GetParameters();
 pars = dev.GetParameters(pars);

 foreach(IParameterMetaDataBase p in pars) {
 Console.WriteLine(p.ToString());
 }
 }
 catch(Exception ex) {
 Console.WriteLine("Error: " + ex);
 }

finally {
try {

if (dev.IsOpen) dev.Close();
 }
 catch { }
}

 Console.WriteLine("Done...");
 }
 }
}

36

 Examples

Setting device parameters

This example will show you how to connect and set parameters from the device.

Java
package com.canberra.examples;

import java.util.ArrayList;

import com.canberra.datasources.parameters.IParameterMetaDataBase;
import com.canberra.protocols.gp110i.communications.GP110i;
import com.canberra.protocols.gp110i.datatypes.parameters.Parameter;

public class Main {

 private Main() {};

 @SuppressWarnings("rawtypes")
 public static void main(String[] args) {
 //Create a device instance
 GP110i dev = new GP110i();

 try {

ArrayList<IParameterMetaDataBase> wpars = new
ArrayList<IParameterMetaDataBase>();

//Open a connection to the device
dev.open("10.0.1.4");

//Loop through all device parameters
for (IParameterMetaDataBase par :

dev.getParameters(dev.listAllParameters())) {
Parameter p = (Parameter) par;
System.out.println("Name: " + p.getName() + "; value: " +

p.getValue());
if (dev.isReadOnlyParameter(par)) continue;
wpars.add(par);

 }
//Write the values back to the device
dev.setParameters(wpars);

}
catch(Exception ex) {

System.out.println("Exception: " + ex);
}
finally {

//Close any open connections
try {

if (dev.isOpen()) dev.close();
}
catch(Exception ex) {System.out.println("Exception: " + ex);}

}

System.exit(0);

}}

 37

.NET
using System;
using System.Collections.Generic;

using Canberra.Datasources.Parameters;
using Canberra.Protocols.GP110i.Communications;
using Canberra.Protocols.GP110i.Datatypes.Parameters;

namespace gp110i2
{
 class MainClass
 {
 public static void Main (string[] args)
 {
 GP110i dev = new GP110i();
 try {
 dev.Open("10.0.1.4");

 List<IParameterMetaDataBase> pars = ParameterFactory.GetParameters();

List<IParameterMetaDataBase> wpars =new List<IParameterMetaDataBase>();
 pars = dev.GetParameters(pars);

 foreach(IParameterMetaDataBase p in pars) {
 Console.WriteLine(p.ToString());

if (GP110i.IsReadOnlyParameter(p)) continue;
wpars.Add(p);

 }

//Write the values back to the device
dev.SetParameters(wpars);

 }
 catch(Exception ex) {
 Console.WriteLine("Error: " + ex);
 }

finally {
try {

if (dev.IsOpen) dev.Close();
 }
 catch { }
}

 Console.WriteLine("Done...");
 }
 }
}

38

 Examples

Getting historical data

This example will show you how to connect and get historical data from the device.

Java
package com.canberra.examples;
import com.canberra.states.IState;
import com.canberra.protocols.gp110i.communications.GP110i;
import com.canberra.protocols.gp110i.datatypes.historian.Data;
import com.canberra.protocols.gp110i.datatypes.historian.Summary;

public class Main {

 private Main() {};

 public static void main(String[] args) {
 //Create a device instance
 GP110i dev = new GP110i();

 try {

//Open a connection to the device
dev.open("10.0.1.4");
//Enable logging
dev.enableLogging(true);

//Read the history summary
for (Summary sum : dev.getLogSummary()) {

System.out.println("Element: " + sum.getElement() + "; numEntries: " +
sum.getNumberOfEntries() + "; startDate: " + sum.getStartDate()+ ";
endDate: " + sum.getEndDate());

//Get the history data
if (sum.getNumberOfEntries() > 0) {

for (Data data : dev.getLogData(sum.getElement(),
sum.getStartDate(), sum.getEndDate())) {

String alarms="";
for (IState state : data.getAlarms()) {

alarms += state.getName() + ", ";
}
String status="";
for (IState state : data.getStatus()) {

status += state.getName() + ", ";
}
System.out.println("Dose rate: " + data.getDoseRate() + "; total
dose: " + data.getTotalDose() + "; temperature: " +
data.getTemperature() + "; Date: " + data.getTime() + "; Alarms: "
+ alarms + "; Status: " + status);
}

 }
 }

}
catch(Exception ex) {

System.out.println("Exception: " + ex);
}
finally {

//Close any open connections
try {

if (dev.isOpen()) dev.close();
}
catch(Exception ex) {System.out.println("Exception: " + ex);}

}

System.exit(0);}}

 39

.NET

using System;
using System.Collections.Generic;

using Canberra.Datasources.Parameters;
using Canberra.Protocols.GP110i.Communications;
using Canberra.Protocols.GP110i.Datatypes.Parameters;
using Canberra.Protocols.GP110i.Datatypes.Historian;

using System.Globalization;
using Canberra.States;

namespace gp110i2
{
 class MainClass
 {
 public static void Main (string[] args)
 {
 GP110i dev = new GP110i();
 try {

 dev.Open("10.0.1.4");

//Enable logging
dev.EnableLogging(true);

 //Read the history summary
 foreach (Summary sum in dev.GetLogSummary()) {

Console.WriteLine("Element: " + sum.Element + "; numEntries: "
+ sum.NumberOfEntries + "; startDate: " + sum.StartDateTime+
"; endDate: " + sum.EndDateTime);

 //Get the history data
 if (sum.NumberOfEntries > 0) {

foreach (Data data in dev.GetLogData(sum.Element,
sum.StartDateTime, sum.EndDateTime)) {

String alarms="";
foreach (IState state in data.Alarms) {

alarms += state.Name + ", ";
}
String status="";
foreach (IState state in data.Status) {

status += state.Name + ", ";
}
Console.WriteLine("Dose rate: " + data.DoseRate + "; total

dose: " + data.TotalDose + "; temperature: " +
data.Temperature + "; Date: " + data.Time + "; Alarms: "
+ alarms + "; Status: " + status);

 }

 }
 }
 }
 catch(Exception ex) {
 Console.WriteLine("Error: " + ex);
 }

finally {
try {

if (dev.IsOpen) dev.Close();
}
catch { }

}

 Console.WriteLine("Done...");
 }
 }
}

40

 Examples

Calibration

This example will show you how to perform a calibration. This example requires
two radioactive sources. One source is, 0.1 R/h, is used to calibrate the low range
tube. The other, 140 R/h, is used to calibrate the high range tube.

Java
package com.canberra.examples;

import java.util.ArrayList;
import java.util.List;

import com.canberra.datasources.parameters.IParameterMetaDataBase;
import com.canberra.states.IState;
import com.canberra.protocols.gp110i.communications.GP110i;
import com.canberra.protocols.gp110i.datatypes.parameters.acquisition.DoseUnits;
import com.canberra.protocols.gp110i.datatypes.parameters.calibration.*;
import com.canberra.protocols.gp110i.datatypes.parameters.calibration.states.*;

public class Main {

 private Main() {};

 public static void main(String[] args) {
 //Create a device instance
 GP110i dev = new GP110i();

 try {

List<IParameterMetaDataBase> wpars = new
ArrayList<IParameterMetaDataBase>();
List<IParameterMetaDataBase> par= new ArrayList<IParameterMetaDataBase>();

//Open a connection to the device
dev.open("10.0.1.4");

//Disable calibrations (for both tubes)
dev.enableCalibration(false, true);
dev.enableCalibration(false, false);

//Disable linearity testing
for (int i=0; i<12; i++) {

try {
dev.enableLinearityCheck(false, i, 0);

}
catch(Exception ex) {}

}

//Disable logging
dev.enableLogging(false);

//Do the low range tube (units are in R/h so specify units)
wpars.add(new DoseUnits(DoseUnits.REM));
wpars.add(new LowRangeCalibrationSource(.1));
dev.setParameters(wpars);

//Enable calibration for low range tube
dev.enableCalibration(true, true);

//Loop until calibration is done
boolean loop=false, success=false;
par.add(new CalibrationStatus());
par.add(new LowRangeCalibrationFactor());
par.add(new HighRangeCalibrationFactor());

do {

java.lang.Thread.sleep(2000);
loop = false;
par = dev.getParameters(par);
for (IState state : ((CalibrationStatus) par.get(0)).getState()) {

if (state instanceof Busy) loop=true;
if (state instanceof Success) success=true;

}
if (loop)
System.out.println(“Busy calibrating. Time Remaining: “ +
((CalibrationStatus) par.get(0)).getTimeRemaining() + “ (sec)”);

} while(loop);

 41

if (!success) System.out.println("Calibration did not succeed");
else System.out.println("Calibration factor is: " + par.get(1));

//Do the high range tube
wpars.clear();
wpars.add(new HighRangeCalibrationSource(140));
dev.setParameters(wpars);

//Enable calibration for high range tube
dev.enableCalibration(true, false);

//Loop until calibration is done
do {

java.lang.Thread.sleep(2000);
loop = false;
par = dev.getParameters(par);
for (IState state : ((CalibrationStatus) par.get(0)).getState()) {

if (state instanceof Busy) loop=true;
if (state instanceof Success) success=true;

}
if (loop)
System.out.println(“Busy calibrating. Time Remaining: “ +
((CalibrationStatus) par.get(0)).getTimeRemaining() + “ (sec)”);

} while(loop);

if (!success) System.out.println("Calibration did not succeed");
else System.out.println("Calibration factor is: " + par.get(2));

}
catch(Exception ex) {

System.out.println("Exception: " + ex);
}
finally {

//Disable calibrations (for both tubes)
try {

if (dev.isOpen()) dev.enableCalibration(false, true);
}
catch(Exception ex) {}
try {

if (dev.isOpen()) dev.enableCalibration(false, false);
}
catch(Exception ex) {}

//Enable logging
try {

if (dev.isOpen()) dev.enableLogging(true);
}
catch(Exception ex) {}

//Close any open connections
try {

if (dev.isOpen()) dev.close();
}
catch(Exception ex) {System.out.println("Exception: " + ex);}

}

System.exit(0);

}}

42

 Examples

.NET
using System;
using System.Collections.Generic;

using Canberra.Datasources.Parameters;
using Canberra.States;
using Canberra.Protocols.GP110i.Communications;
using Canberra.Protocols.GP110i.Datatypes.Parameters;
using Canberra.Protocols.GP110i.Datatypes.Parameters.Acquisition;
using Canberra.Protocols.GP110i.Datatypes.Parameters.Calibration;
using Canberra.Protocols.GP110i.Datatypes.Parameters.Calibration.States;

namespace gp110i2
{
 class MainClass
 {
 public static void Main (string[] args)
 {
 GP110i dev = new GP110i();
 try {

List<IParameterMetaDataBase> wpars = new
List<IParameterMetaDataBase>();

 List<IParameterMetaDataBase> par= new List<IParameterMetaDataBase>();

 //Open a connection to the device
 dev.Open("10.0.1.4");

 //Disable calibrations (for both tubes)
 dev.EnableCalibration(false, true);
 dev.EnableCalibration(false, false);

//Disable linearity
for (uint i=0; i<12; i++) {

try {dev.EnableLinearityCheck(false, i, 0);} catch{}
}

 //Disable logging
 dev.EnableLogging(false);

 //Do the low range tube (units are in R/h so specify units)

wpars.Add(new DoseUnits(DoseUnits.REM));
 wpars.Add(new LowRangeCalibrationSource(.1));
 dev.SetParameters(wpars);

 //Enable calibration for low range tube
 dev.EnableCalibration(true, true);

 //Loop until calibration is done
 bool loop=false, success=false;
 par.Add(new CalibrationStatus());
 par.Add(new LowRangeCalibrationFactor());
 par.Add(new HighRangeCalibrationFactor());

 do {

System.Threading.Thread.Sleep(2000);
 loop = false;
 par = dev.GetParameters(par);
 foreach (IState state in (par[0] as CalibrationStatus).State) {
 if (state is Busy) loop=true;
 if (state is Success) success=true;
 }

if (loop)
Console.WriteLine(“Busy calibrating. Time Remaining:” + (par[0]
as CalibrationStatus).TimeRemaining + “ (sec)”);

 } while(loop);

 if (!success) Console.WriteLine("Calibration did not succeed");
 else Console.WriteLine("Calibration factor is: " + par[1]);

 43

//Do the high range tube
 wpars.Clear();
 wpars.Add(new HighRangeCalibrationSource(140));
 dev.SetParameters(wpars);

 //Enable calibration for high range tube
 dev.EnableCalibration(true, false);

 //Loop until calibration is done
 do {

System.Threading.Thread.Sleep(2000);
 loop = false;
 par = dev.GetParameters(par);
 foreach (IState state in (par[0] as CalibrationStatus).State) {
 if (state is Busy) loop=true;
 if (state is Success) success=true;
 }

if (loop)
Console.WriteLine(“Busy calibrating. Time Remaining:” + (par[0]
as CalibrationStatus).TimeRemaining + “ (sec)”);

 } while(loop);

 if (!success) Console.WriteLine("Calibration did not succeed");
 else Console.WriteLine("Calibration factor is: " + par[2]);
 }
 catch(Exception ex) {
 Console.WriteLine("Error: " + ex);
 }

finally {
//Disable calibrations (for both tubes)
try { if (dev.IsOpen) dev.EnableCalibration(false, true);} catch { }
try { if (dev.IsOpen) dev.EnableCalibration(false, false);} catch { }

//Enable logging
try { if (dev.IsOpen) dev.EnableLogging(true);}catch { }

//Close any open connections
try {

if (dev.IsOpen) dev.Close();
 }
 catch { }
}

 Console.WriteLine("Done...");
 }
 }
}

44

 Examples

Linearity Check

This example will show you how to perform a linearity check that is typically done
after a calibration. This example requires 5 radioactive sources with emission rates
of 0.000463, 16.4, 118, 160, and 325 R/h.

Java
package com.canberra.examples;

import java.util.ArrayList;
import java.util.List;

import com.canberra.states.IState;
import com.canberra.datasources.parameters.IParameterMetaDataBase;
import com.canberra.protocols.gp110i.communications.GP110i;
import com.canberra.protocols.gp110i.datatypes.parameters.calibration.*;
import com.canberra.protocols.gp110i.datatypes.parameters.calibration.states.*;

public class Main {

 private Main() {};

 public static void main(String[] args) {
 //Create a device instance
 GP110i dev = new GP110i();

 try {

List<IParameterMetaDataBase> par= new ArrayList<IParameterMetaDataBase>();

//Open a connection to the device
dev.open("10.0.1.4");

//Disable calibrations (for both tubes)
dev.enableCalibration(false, true);
dev.enableCalibration(false, false);

//Disable linearity
for (int i=0; i<12; i++) {

try {
dev.enableLinearityCheck(false, i, 0);

}
catch(Exception ex) {System.out.println("Exception: " + ex);}

}

//Disable logging
dev.enableLogging(false);

//Set the dose units to REM because the linearity points below
//are specified in R/h
List<IParameterMetaDataBase> units = new

ArrayList<IParameterMetaDataBase>();
units.add(new DoseUnits(DoseUnits.REM));
dev.setParameters(units);

//Set the linearity points
float []pt=new float[]{0.000463F, 16.4F, 118, 160, 325};
dev.setLinearityCheckPoints(pt);

//Set the parameter we want to monitor into the list
par.add(new CalibrationStatus());

//Create a parameter list to query for the check points once
//the test is complete
LinearityCheckPoints pts;
List<IParameterMetaDataBase> lin=new ArrayList<IParameterMetaDataBase>();
lin.add(new LinearityCheckPoints());

//Perform linearity test on each point
for(int i=0; i<pt.length; i++) {

dev.enableLinearityCheck(true, i, 0);

//Loop until linearity is done
boolean loop=false, success=false;
do {

java.lang.Thread.sleep(2000);
loop = false;

 45

par = dev.getParameters(par);
for (IState state : ((CalibrationStatus) par.get(0)).getState()) {

if (state instanceof LinearityCheckBusy) loop=true;
if (state instanceof LinearityCheckSuccess) success=true;

}
if (loop) System.out.println("Busy performing linearity check. Time

Remaining: "+((CalibrationStatus)
par.get(0)).getTimeRemaining() + "
(sec)");

} while(loop);

//Get the check points to display the information
pts=((LinearityCheckPoints) dev.getParameters(lin).get(0));

//Display status for this test
if (!success)

System.out.println("Linearity check did not succeed for: " + pt[i] +
", Average rate: " +
pts.getPoints().get(i).getAverageRate() + " Percent
Error: " +
pts.getPoints().get(i).getPercentError());

else
System.out.println("Linearity check did succeed for: " + pt[i] + ",

Average rate: " +
pts.getPoints().get(i).getAverageRate() + " Percent
Error: " +
pts.getPoints().get(i).getPercentError());

 }

}
catch(Exception ex) {

System.out.println("Exception: " + ex);
}
finally {

//Disable linearity
try {

if (dev.isOpen())
for (int i=0; i<12; i++) dev.enableLinearityCheck(false, i, 0);

}
catch() { }

//Enable logging
try {

if (dev.isOpen()) dev.enableLogging(true);
}
catch() { }

//Close any open connections
try {

if (dev.isOpen()) dev.close();
}
catch(Exception ex) {System.out.println("Exception: " + ex);}

}

System.exit(0);

}}

46

 Examples

.NET
using System;
using System.Collections.Generic;

using Canberra.Datasources.Parameters;
using Canberra.States;
using Canberra.Protocols.GP110i.Communications;
using Canberra.Protocols.GP110i.Datatypes.Parameters;
using Canberra.Protocols.GP110i.Datatypes.Parameters.Calibration;
using Canberra.Protocols.GP110i.Datatypes.Parameters.Calibration.States;

namespace gp110i2
{
 class MainClass
 {
 public static void Main (string[] args)
 {
 GP110i dev = new GP110i();
 try {
 List<IParameterMetaDataBase> par= new List<IParameterMetaDataBase>();

 //Open a connection to the device
 dev.Open("10.0.1.4");

//Disable calibrations (for both tubes)
 dev.EnableCalibration(false, true);
 dev.EnableCalibration(false, false);

//Disable linearity
for (uint i=0; i<12; i++) {

try {dev.EnableLinearityCheck(false, i, 0);} catch{}
}

 //Disable logging
 dev.EnableLogging(false);

//Set the dose units to REM because the linearity points below
//are specified in R/h
List<IParameterMetaDataBase> units = new
List<IParameterMetaDataBase>();
units.Add(new DoseUnits(DoseUnits.REM));
dev.SetParameters(units);

 //Set the linearity points

float []pt=new float[]{0.000463F, 16.4F, 118, 160, 325};
 dev.SetLinearityCheckPoints(pt);

//Set the parameter we want to monitor into the list
 par.Add(new CalibrationStatus());

//Create a parameter list to query for the check points
//once the test is complete

 LinearityCheckPoints pts;
 List<IParameterMetaDataBase> lin=new List<IParameterMetaDataBase>();
 lin.Add(new LinearityCheckPoints());

 //Perform linearity test on each point
 for(uint i=0; i<pt.Length; i++) {
 dev.EnableLinearityCheck(true, i, 0);

 //Loop until linearity is done
 bool loop=false, success=false;
 do {

System.Threading.Thread.Sleep(2000);
 loop = false;
 par = dev.GetParameters(par);
 foreach (IState state in (par[0] as CalibrationStatus).State) {
 if (state is LinearityCheckBusy) loop=true;
 if (state is LinearityCheckSuccess) success=true;
 }

if (loop)
Console.WriteLine("Busy performing linearity check. Time

Remaining: "+(par[0] as
CalibrationStatus).TimeRemaining + " (sec)");

 } while(loop);

//Get the check points to display the information
pts=(dev.GetParameters(lin)[0] as LinearityCheckPoints);

 47

//Display status for this test
if (!success)
Console.WriteLine("Linearity check did not succeed for: " + pt[i]

+ ", Average rate: " + pts.Points[i].AverageRate +
" Percent Error: " + pts.Points[i].PercentError);

else
Console.WriteLine("Linearity check did succeed for: " + pt[i] +

", Average rate: " + pts.Points[i].AverageRate + "
Percent Error: " + pts.Points[i].PercentError);

 }

 }
 catch(Exception ex) {
 Console.WriteLine("Error: " + ex);
 }

finally {
//Disable linearity
try {

if (dev.IsOpen)
for (uint i=0; i<12; i++)

dev.EnableLinearityCheck(false, i, 0);
}
catch{}

//Enable logging
try {

if (dev.IsOpen) dev.EnableLogging(true);
}
catch{ }

//Close any open connections
try {

if (dev.IsOpen) dev.Close();
 }
 catch { }
}

 Console.WriteLine("Done...");
 }
 }
}

48

 Parameters

Parameters
This section will list all of the parameters the device supports. A class instance
represents each parameter. All parameters are contained in the
canberra.protocols.gp110i.datatypes.parameters namespace. Each class contains all
of the metadata associated with the parameter such as minimum value, maximum
value, data type, description, name, read-only, read-write, etc…

This section will discuss the parameters and the associated namespaces.

Acquisition

The acquisition parameters are in the
com.canberra.protocols.gp110i.datatypes.parameters.acquisition namespace. The
table below lists the parameters.

Name Description

DataLogRate The rate in entries/second at which data is logged
to the non-volatile memory. This parameter
should never be written by a client

DataPushRate This value is expressed in seconds and represents
the period at which data is pushed out when
'Push' mode is enabled

DataStoreCount DataStoreRate and this parameter determines the
interval at which data is transferred from the non-
volatile memory into the file system. This
parameter should never be written by a client

DataStoreFilemax Controls the number of files to be allocated for
storage in the file system

DataStoreRate DataStoreCount and this parameter determines
the interval at which data is transferred from the
non-volatile memory into the file system. This
parameter should never be written by a client

DigitalAlarmState The alarms and failures. See “Alarm” on page
57 for details. You can clear any alarms using the
Clear() method.

DoseRateAlertAlarmSetpoint The warning setpoint for the dose rate

DoseRateFiltered The dose rate will be filtered using the
'Exponential Filtering' method. There are 2 GM
tubes present and the device will switch between
them based on the dose rate.

 49

DoseRateHighAlarmSetpoint The alarm setpoint for the dose rate

DoseRateUnfiltered The raw, or unfiltered, dose rate. There are 2 GM
tubes present and the device will switch between
them based on the dose rate.

DoseTotalAlertAlarmSetpoint The warning setpoint for the total dose

DoseTotalHighAlarmSetpoint The alarm setpoint for the total dose

DoseUnits The units the device uses to return the dose
(0=uSv, 1=mR, uR=2, R=3, mSv=4, Sv=5). The
dose rate will be returned using the same units
but per hour values.

HighRangeTubeActive State indicating that the high-energy tube is in
use.

IntegratedDose The total dose since it was last reset

Temperature The ambient temperature in Celsius

TotalHighTubeCounts Represents the number of events captured by the
high-energy tube since the high range tube was
assembled

TotalHighTubeSecs It represents the number of seconds that the high-
energy tube has been active since the high range
tube was assembled

TotalLowTubeCounts Represents the number of events captured by the
low-energy tube since the low range tube was
assembled

TotalLowTubeSecs It represents the number of seconds that the low-
energy tube has been active since the low range
tube was assembled

LowTubeLifetimeDose The total dose recorded since the low range tube
was assembled

HighTubeLifetimeDose The total dose resources since the high range
tube was assembled

CustomPushList The list of parameters to push to clients
connected to the data push port. Push mode
(Stream) is enabled via the StreamEnable
parameter.

50

 Parameters

PushListSelect 0= Use Default Push List. Refer to the Push List
section for more information

1= Use Custom Push List established by the
operator through the CustomPushLIst parameter

AlarmStatusLatch This parameter tells the device whether to latch
or not-latch the alarm status once the condition
that caused it clears. The LED will follow the
alarm status.

0= not-latch

1= latch

 51

Calibration

The calibration parameters are in the
com.canberra.protocols.gp110i.datatypes.parameters.calibration namespace. The
table below lists the parameters.

Name Description

CalibrationDueDate This parameter is indirectly set to the
LastCalibrationDate + 2 years when the
LastCalibrationDate parameter is written. It can
be changed.

CalibrationStatus The calibration status, see the “Calibration
Status” on page 58.

HighRangeCalibrationFactor The calibration factor for the high-energy tube

HighRangeCalibrationSource The dose rate for the high-energy calibration
source

LastCalibrationDate The date the calibration was last performed

LowRangeCalibrationFactor The calibration factor for the low-energy tube

LowRangeCalibrationSource The dose rate for the low-energy calibration
source

TubeBaseSensitivity The tube sensitivity. This parameter is currently
reserved.

MaximumLinearityCheckPoints The maximum number of linearity checkpoints
supported by the device.

LowGMlimit The value represents the minimum dose range
supported by the device

HighGMlimit The value represents the maximum dose range
supported by the device

LinearityCheckPoints The linearity checkpoints.

LastAverageRate The intermediate dose rate determined during
linearity check

LastPercentError The intermediate percent error determined during
linearity check

52

 Parameters

Network

The calibration parameters are in the
com.canberra.protocols.gp110i.datatypes.parameters.network namespace. The table
below lists the parameters.

Name Description

ConfigurationPort The socket port used to configure the device

ConfigurationSessionTimeout The number of milliseconds within which if there
is no communication with the device over the
socket it will be closed due to time out error.

EthernetAssignedIP The assigned Ethernet network address

EthernetDhcpEnabled The Ethernet DHCP enable state

EthernetGateway The Ethernet gateway address

EthernetMacAddress The Ethernet MAC address

EthernetStaticIP The Ethernet static IP address

EthernetSubnetMask The subnet mask for the Ethernet interface

MaxClients The maximum number of simulataneously
connected clients

StreamEnabled The stream enable state

StreamingPort The socket port used for streaming data to clients

StreamSessionTimeout The number of milliseconds within which if there
is no communication over the streaming port
with the device over the socket it will be closed
due to time out error.

TftpEnabled The enable state for the Trivial File Transfer
Protocol server

UPnPEnable The enable state for Universal Plug and Play
discovery

UPnPFriendlyName The UPnP discovery name

UPnPTimeToLive The UPnP Time to Live (number of network
hops)

 53

USBAssignedIP The assigned USB network address

USBDhcpEnabled The USB DHCP enable state

USBGateway The USB gateway address

USBMacAddress The USB MAC address

USBStaticIP The USB static IP address

USBSubnetMask The subnet mask for the USB interface

WebserverEnabled The web server enable state

KeepAliveEnable The enable state for network keep alive.

KeepAliveInterval This value, expressed in seconds, determines the
rate of the KeepAlive commands issued by the
device’s network interface to detect valid
connections once the KeepAlive logic in the
device has been activated. The KeepAlive logic
remains inactive until the timeout determined by
the Network_KeepAliveTimeout parameter has
expired.

KeepAliveTimeout This value, expressed in milliseconds, represents
the amount of transaction-less time that the
device allows to expire before activating its
network interface KeepAlive logic. Once
activated, the KeepAlive logic issues Keep Alive
commands at the rate determined by the
Network_KeepAliveInterval and terminates any
open connections that do not acknowledge the
command after nine un-acknowledged attempts.

54

 Parameters

System

The system parameters are in the
com.canberra.protocols.gp110i.datatypes.parameters.system namespace. The table
below lists the parameters.

Name Description

DeviceDateTime The date/time of the device

DeviceStatus The device status, see the “Device Status” on
page 59. You can clear any faults using the
clear() method.

DiagnosticCounters The diagnostic counters. This parameter
provides information about the various diagnostic
tests that are always running. You can clear the
diagnostic counters using the clear() method.

FirmwareVersion The firmware version

LastError The last error that occurred. This will contain a
text description of the error condition

Location The location of the device

ProbeList A list of other tubes discovered on the network

SerialNumber The serial number of the device

UnitNumber The unit number associated with the device.

WatchdogEnable The watchdog enable state

WebUIversion The web user interface version

GMtubeVoltage The GM tube voltage

LvpsVoltage The LVPS voltage

DiagnosticValue An unnamed value returned from a diagnostic
information request. Reserved for factory use.

StorageTotal Total number of bytes for storage in device’s
mass storage

StorageRemaining Percent of device mass storage left

 55

Name Description

ManufacturingInfo Information specific to the manufacturer

56

 Alarm

Alarm
This section will discuss the alarms and failures that may be returned from the
DigitalAlarmState parameter. Each alarm and failure is represented by an instance of
a class. These classes are contained in the
com.canberra.protocols.gp110i.datatypes.alarms namespace. These classes are
tabulated below.

Name Description

DoseRateAlarm Dose rate alarm limit has been exceeded.

DoseRateAlarm Dose rate warning limit has been exceeded.

TotalDoseAlarm Total dose alarm limit exceeded

TotalDoseWarning Total dose warning limit exceeded

GMtubeFailure A GM tube has failed

NonVolatileRAMFault The nonvolatile RAM has a memory error.
Settings may have been lost.

InstrumentOverrange Over-range condition detected indicating that one
or more readings have exceeded the device’s
maximum dose range.

RtcBatteryLow The real time clock battery is low.

The items in blue are defined in a different namespace because they are used in other
aspects of the system besides alarmings. This namespace is
com.canberra.protocols.gp110i.datatypes.faults.

 57

Calibration Status
This section will discuss the states that occur during a calibration. These states are
reported through the CalibrationStatus parameter. Each state is represented by an
instance of a class. These classes are contained in the
com.canberra.protocols.gp110i.datatypes.parameter.calibration.states namespace.
These classes are tabulated below.

Name Description

Aborted The calibration was aborted.

Busy The tube is busy calibrating.

Failure The tube failed to calibrate.

Success The calibration process completed successfully.

TimedOut The calibration process timed out.

LinearityCheckAborted The linearity check was aborted.

LinearityCheckBusy The tube is busy performing linearity check.

LinearityCheckFailure The linearity check failed.

LinearityCheckSuccess The linearity check succeeded.

Complete Indicates that both GM tubes have reported that
their respective calibration has been completed
successfully.

HighTubeActive Indicates the high GM tube is inuse for
calibration or linearity.

FailedTooLow Indicates the calibration or linearity check failed
because the count rate is too low.

FailedTooHigh Indicates the calibration or linearity check failed
because the count rate is too high.

HighTubeCalibrated The high range tube is calibrated.

LowTubeCalibrated The low range tube is calibrated.

58

 Device Status

Device Status
This section will discuss the device states. These states are reported through the
DeviceStatus parameter. Each state is represented by an instance of a class. These
classes are contained in the com.canberra.protocols.gp110i.datatypes.status and
com.canberra.protocols.gp110i.datatypes.faults namespace. These classes are
tabulated below.

Name Description

AcquisitionInactive Acquisition is inactive.

CalibrationActive The calibration or linearity check is active. It can be
enabled by using the enableCalibration() method.

LogDisabled Data logging is disabled. It can be enabled by using the
enableLogging() method

HardwareInit Error occurred while initializing hardware

LogInit A critical error developed during initialization of the data
log system. This can occur at init or during run-time as
storage elements are manipulated.

LogSystem A critical error was detected during data logging

LogTime The timestamp for the last-logged entry was less than the
previously logged entry

ParameterInit Error occurred while initializing parameters

DeviceBusy Asserted by the device after a hardware reset. It remains set
for the duration of the initialization sequence. The
initialization sequence can take up to about a minute as the
device catalogs the entire historical database into memory.
During DeviceBusy the device can be queried for status
and other data but not for historical data because the
catalog is incomplete.

Rebooting Indicates the device is processing a Soft Boot or Factory
Default command.

Updating Indicates an upload or download transfer is in progress

CalibrationFault The calibration or linearity check failed

SystemFault A system fault has occurred. Look at LastError for a
detailed description

 59

Name Description

RtcBatteryLow The real-time clock battery is low and should be replaced
as soon as possible.

GMtubeVoltageFault The GM voltage is out of tolerance indicating a hardware
power supply problem

LvpsVoltageFault The internal LVPS voltage is out of tolerance indicating a
hardware power supply problem

60

 Logging Details

Logging Details
This section will discuss the different data types involved in data logging. There are
basically two types. One is the log summary that provides summary information
about the various files stored on the device. The other is the log data that is the data
stored in the file.

Log Summary

The log summary is a class in the namespace
com.canberra.protocols.gp110i.datatypes.historian. The class consists of the
following properties. The log summary is retrieved by using the getLogSummary()
method.

Name Description

element This is a number that represents the file on the
device

numberOfEntries The number of entries in the file.

startDate The start date which is the date of the first entry

endDate The date of the last entry

startSequenceNumber The start sequence number.

endSequenceNumber The end sequence number.

The sequence numbers primarily exists as an integrity check within the device. It is
also used in conjunction with the start time stamp when retrieving logged data. If we
consider a situation where the RTC was changed to an earlier time, the device could
end up with new entries having an older time stamp than previously logged entries.
That can remain that way, or go on for some time until the RTC is changed back. If
the search used only the time stamp it would not return those entries whose time is
not incremental. Instead, using the sequence number guarantees that all entries are
returned and are returned in the proper order.

 61

Log Data

The log data is a class in the namespace
com.canberra.protocols.gp110i.datatypes.historian. The class consists of the
following properties. This data is retrieved using the getLogData() method.

Name Description

time The date/time of the data

doseRate The dose rate in the units of the device Units are specified by
canberra.protocols.gp110i.datatypes.parameters.acquisition.DoseUnits

totalDose The total dose in the units of the device. Units are specified by
canberra.protocols.gp110i.datatypes.parameters.acquisition.DoseUnits

temperature The temperature in Celsius

alarms A list of alarms, see Alarms section

status A list of device states, see Device Status section

62

 Exceptions

 63

Exceptions
This section will discuss the custom exceptions that may the thrown from any of the
methods described in this document.

Exceptions have been defined in two namespaces canberra.exceptions and
com.canberra.protocols.gp110i.exceptions. The exceptions that are thrown from the
methods of the GP110i class are tabulated below.

Namespace Name Description

DatasourceAlreadyOpenException You invoked open() before closing an
already opened connection

DatasourceNotOpenException You invoked close() without ever
calling open()

ca
nb

er
ra

.e
xc

ep
ti

on
s

IllegalArgumentException An illegal argument was passed to a
method

ChecksumException The checksum received from the device
does not match the computed checksum

DeviceErrorException The device returned an error. Invoke
toString() method on this execption for
details.

ca
nb

er
ra

.p
ro

to
co

ls
.g

p1
10

i.d
at

at
yp

es
.e

xe
pt

io
ns

InvalidResponseException The device returned an invalid
response.

Notes

64

__

Warranty

Canberra (we, us, our) warrants to the customer (you, your) that for a period of ninety (90) days from the date of
shipment, software provided by us in connection with equipment manufactured by us shall operate in accordance
with applicable specifications when used with equipment manufactured by us and that the media on which the
software is provided shall be free from defects. We also warrant that (A) equipment manufactured by us shall be
free from defects in materials and workmanship for a period of one (1) year from the date of shipment of such
equipment, and (B) services performed by us in connection with such equipment, such as site supervision and
installation services relating to the equipment, shall be free from defects for a period of one (1) year from the date
of performance of such services.

If defects in materials or workmanship are discovered within the applicable warranty period as set forth above, we
shall, at our option and cost, (A) in the case of defective software or equipment, either repair or replace the
software or equipment, or (B) in the case of defective services, reperform such services.

LIMITATIONS
EXCEPT AS SET FORTH HEREIN, NO OTHER WARRANTIES OR REMEDIES, WHETHER STATUTORY,
WRITTEN, ORAL, EXPRESSED, IMPLIED (INCLUDING WITHOUT LIMITATION, THE WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE) OR OTHERWISE, SHALL APPLY. IN NO
EVENT SHALL CANBERRA HAVE ANY LIABILITY FOR ANY SPECIAL, EXEMPLARY, PUNITIVE, INDIRECT OR
CONSEQUENTIAL LOSSES OR DAMAGES OF ANY NATURE WHATSOEVER, WHETHER AS A RESULT OF
BREACH OF CONTRACT, TORT LIABILITY (INCLUDING NEGLIGENCE), STRICT LIABILITY OR OTHERWISE.
REPAIR OR REPLACEMENT OF THE SOFTWARE OR EQUIPMENT DURING THE APPLICABLE WARRANTY
PERIOD AT CANBERRA'S COST, OR, IN THE CASE OF DEFECTIVE SERVICES, REPERFORMANCE AT
CANBERRA'S COST, IS YOUR SOLE AND EXCLUSIVE REMEDY UNDER THIS WARRANTY.

EXCLUSIONS
Our warranty does not cover damage to equipment which has been altered or modified without our written
permission or damage which has been caused by abuse, misuse, accident, neglect or unusual physical or electrical
stress, as determined by our Service Personnel.

We are under no obligation to provide warranty service if adjustment or repair is required because of damage
caused by other than ordinary use or if the equipment is serviced or repaired, or if an attempt is made to service or
repair the equipment, by other than our Service Personnel without our prior approval.

Our warranty does not cover detector damage due to neutrons or heavy charged particles. Failure of beryllium,
carbon composite, or polymer windows, or of windowless detectors caused by physical or chemical damage from
the environment is not covered by warranty.

We are not responsible for damage sustained in transit. You should examine shipments upon receipt for evidence
of damage caused in transit. If damage is found, notify us and the carrier immediately. Keep all packages,
materials and documents, including the freight bill, invoice and packing list.

Software License

When purchasing our software, you have purchased a license to use the software, not the software itself. Because
title to the software remains with us, you may not sell, distribute or otherwise transfer the software. This license
allows you to use the software on only one computer at a time. You must get our written permission for any
exception to this limited license.

BACKUP COPIES
Our software is protected by United States Copyright Law and by International Copyright Treaties. You have our
express permission to make one archival copy of the software for backup protection. You may not copy our
software or any part of it for any other purpose.

Revised 1 Apr 03

	1. Introduction
	The Software
	System Requirements
	Software

	Installation
	Directory Structure
	Source Code

	2. Getting Started
	Development
	Overview
	Using the library
	Java
	 .NET
	MonoDevelop
	Visual Studio

	Entry Point
	Namespace
	Thread Safety
	Methods
	Discovery
	Open
	Open State
	Close
	Enumerating Parameters
	Getting Parameters
	Setting Parameters
	Getting Acquisition Data
	Getting Diagnostic Information
	Getting Push List
	Getting History Summary
	Getting History Data
	Modes
	Linearity Test
	Clear

	Examples
	Discovering devices
	Java
	.NET

	Getting device parameters
	Java
	.NET

	Setting device parameters
	Java
	.NET

	Getting historical data
	Java
	.NET

	Calibration
	Java
	.NET

	Linearity Check
	Java
	.NET

	Parameters
	Acquisition
	Calibration
	Network
	System

	Alarm
	Calibration Status
	Device Status
	Logging Details
	Log Summary
	Log Data

	Exceptions

