

Thermo Fisher S C I E N T I F I C

Introduction to FTIR and Raman Spectroscopy
Theory and Practice

2017 Spectroscopic Solutions Seminar

The Power of Molecular Spectroscopy

- Little or no sample prep, rapid screening
- ...on a range of samples...
 - Organics, inorganics, films, coatings, paper, fibers, more
- ...and answer basic questions...
 - What is this stuff? How much is in there? In what form?
 - ...or advanced questions.
 - What is the film thickness? What is the orientation?
 How do viscoelasticity and chemistry relate?

Vibrational Spectroscopy: FTIR and Raman

- Infrared Spectroscopy
 - Energy is absorbed directly...
 - ...which results in peaks
- Raman Spectroscopy
 - High energy light strikes sample...
 - ...the sample 'takes' some of the energy...
 - · ...which results in peaks
- Different methods but similar insights
 - The peaks provide information about the composition, concentration and more
 - Both are reporting upon vibrational motion of the molecules

Basics: Information in the Spectrum

- Energy varies along the x-axis
 - Expressed in wavelength (nanometers, microns) or Wavenumber (cm⁻¹)
- Response (Intensity) is along the y-axis
 - Absorbance, transmittance, specular or diffuse reflectance, Raman scattering
- Peaks occur because different molecules interact with light differently
 - This is what enables spectroscopy to tell us something!

Basics: Spectroscopy and Composition

- Chemical bonds vibrate like springs
- Absorption occurs at the specific frequencies of those vibrations

Frequency of vibration =
$$\frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$
 Relates to bond strength Relates to mass

- As bond strength increases, frequency increases (C≡C > C=C > C-C)
- As mass decreases, frequency increases (C-H > C-C > C-Cl > C-Fe)
- Which is why the peaks tell a story about the material!

Thermo Fisher SCIENTIFIC

Fourier Transform Infrared Spectroscopy

Basics: FTIR as a Laboratory Tool

- FTIR is used to solve problems
 - What is it? How much is in there?
- The ultimate Triage Technique
 - Get in...get an answer...act on it fast
- You generally need to accessorize
 - Add sampling tools, like ATR, Transmission
 - We will talk to that in the next presentation
- What do you need?
 - Single action, repeated analyses?
 - Flexibility?
 - Microscopy?

Basics: Select the Right Tool for your Application

Basics: How FT-IR Works

Time Domain to Frequency Domain

- One mirror moves...
- ...one doesn't
 - This causes the two beams to 'interfere' when they recombine
 - Watch how the detector signal (bottom) varies with mirror movement (top)...
 - The result is a Time versus Detector Signal (Intensity) plot

Detector Signal

The FTIR Interferogram

4 frequencies

10 frequencies

Broadband source

Raw Data to Final Spectrum

Inside the FT-IR Spectrometer

Thermo Scientific™ Nicolet™ iS™10 FT-IR Spectrometer Simplicity of form, dependability of function

Choose Components to Set Spectral Range

The Rest is Up to Physics!

- The dipole moment must change
- Molecules absorb specific frequencies
 - Chemically similar materials absorb in the same range
 - Esters: around 1750 cm⁻¹
 - Hydrocarbons: around 3000 cm⁻¹
- Multiple uses
 - Identification
 - Quantitation
 - Kinetic studies

Basics: What Happens at the Sample?

Heavy Mass, Dipole, Low Frequency Far-IR

Only when there is a dipole change do you get IR peaks

No Dipole, Nothing Happens

NIR: A powerful branch of the FT-IR Family

- NIR heavily used in industrial processes
 - Raw material identification (RMID)
 - "HOVal" for condensation analyses
 - Excellent for moisture detection
- Good Mid-IR generally means good NIR
 - NIR not covered today ask for more information!

3600 cm⁻¹

5200 cm⁻¹

1600 cm⁻¹

Combination band in Water

Thermo Fisher SCIENTIFIC

Raman Spectroscopy

Basics: Raman as a Laboratory Tool

- Raman is used to solve problems
 - Non-destructively, non-invasively
 - Identify, map, image, depth profile
- Often coupled with a microscope
- Minimal or no Sample Preparation
- High Spatial Resolution
- What do you need?
 - Single action, repeated analyses?
 - Flexibility?
 - Imaging?

Basics: Select the Right Tool for your Application

Basics: Raman Spectroscopy

- Raman is a scattering technique
 - Sensitive to vibrational modes of covalent bonds in molecules
 - Most sensitive to highly symmetrical vibrations (i.e. C-C, Si-Si)
 - Sensitive to anything that changes bond energy (i.e. bond angle)

Basics: How Dispersive Raman Spectrometers Work

DXR2 System Basics:

- Lasers
 - 455 nm
 - 532 nm
 - 633 nm
 - 785 nm
- Rayleigh rejection filter
 - 50 cm⁻¹ cut-off
- Apertures
 - Slit
 - Pinhole (confocal mode)
- Gratings
 - Standard, 5 cm⁻¹
 - High Resolution, 2 cm⁻¹
- Detectors
 - CCD, EMCCD

Basics: Why so Many Options on the DXR2?

- Multiple Lasers (455, 532, 633 or 785 nm)?
 - Trade-off: Fluorescence versus Efficiency
 - Fluorescence can be very strong, >> Raman
 - Efficiency strongly depends upon excitation wavelength

Efficiency $\propto 1/\lambda^4$

- High resolution versus standard resolution?
 - See closely spaced peaks, but...
 - Changes your available spectral range
- Detectors?
 - CCD: Standard detector, single point and mapping
 - EMCCD: Faster (not more sensitive), for fast imaging

The Rest is Up to Physics (again)!

- There must be a polarizability change
 - Basically, a change in the electron cloud
- Peaks occur at specific frequencies
- Peaks may display a polarization dependence
 - Orientation and molecular symmetry
- Multiple uses
 - Identification
 - Quantity
 - Kinetics

Basics: What Happens at the Sample?

- IR → Dipole Change
- Raman → Polarizability Change

FT-IR and Raman Spectrum of Benzene

Additional Information: Raman Polarization

- Used to characterize:
 - Molecular symmetry
 - Molecular orientation
 - Crystallinity
 - Morphological traits
- DXR2 Raman polarization
 - Automated laser polarization
 - Automated analyzer orientation

Thermo Fisher SCIENTIFIC

Extending Molecular Spectroscopy

Microspectroscopy and Multimodal Techniques

Basics: Microspectroscopy

 Combine FT-IR or Raman with microscope

 Probe content, homogeneity, contaminants

- FTIR or Raman
 - Today's last talk

Point and shoot

Cross-Sections

Chemical Images

Multimodal Techniques

- Relate Properties to Chemistry
 - Rheo-Raman or Rheo-IR
- Deformulate
 - TGA-IR
 - GC-IR
- Materials Analysis
 - XPS-Raman
 - AFM-Raman

Versatility: IR Microscopy, FT-Raman, Built-in ATR, automated Beamsplitter Exchanger, External experiment module

Versatility: The Thermo Scientific iXR Compact Raman Coupled with XPS

Molecular Spectroscopy: Research to Routine

- Discover.
 - Relate Viscosity to Chemistry
 - Biological imaging
- Solve.
 - Identify unknowns
 - Deformulate materials

Assure

- QA/QC on incoming, outgoing material
- In-line process control

